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Markov Chain and Markov Decision Process

Markov Chain

Markov Decision Process (MDP)

Definition: A Markov Chain is a stochastic process that transitions from
one state to another within a state space, where the probability of each
state depends only on the previous state (Markov property).
Components:

State Space (S): The set of all possible states si, which can be
discrete (e.g., positions on a chessboard) or continuous (e.g.,
positions in physical space).
Transition Operator (T):

Definition: Represents the probabilities of moving from one state
to another.
Notation: Tij = p(st+1 = sj ∣ st = si), the probability of transitioning
from state si to state sj.
Operator Property: T acts on the state distribution μt to produce
the next state distribution μt+1:

μt+1 = Tμt

Interpretation: If you know the distribution of states at time t,
applying T gives you the distribution at time t + 1.

Definition: An MDP extends a Markov Chain by incorporating actions and
rewards, modeling decision-making in stochastic environments.
Components: M = (S, A, T , r)

State Space (S): Set of possible states.
Action Space (A): Set of possible actions the agent can take.
Transition Function (T):

Definition: T (st+1 ∣ st, at) = p(st+1 ∣ st, at), the probability of
transitioning to state st+1 given state st and action at.



Partially Observable Markov Decision Process (POMDP)

The Goal of Reinforcement Learning

Tensor Representation: For discrete states and actions, T can
be represented as a tensor of shape |S| × |A| × |S|.

Reward Function (r):
Definition: r(st, at) provides the immediate reward for taking
action at in state st.
Purpose: Guides the agent toward desirable outcomes.

State Distribution Update:
Policy (π): A strategy defining the probability of taking action a in
state s, denoted π(a ∣ s).
Update Equation:

μt+1(s′) =∑
s∈S

∑
a∈A

T (s′ ∣ s, a)μt(s)π(a ∣ s)

Explanation: The probability of being in state s′ at time t + 1

depends on all possible transitions from states s to s′ via
actions a, weighted by the probabilities μt(s) and π(a ∣ s).

Definition: A POMDP generalizes an MDP by accounting for situations
where the agent cannot fully observe the underlying state.
Components: M = (S, A, T , r, O, Ω)

Observation Space (O): Set of possible observations the agent can
receive.
Emission Probability (Ω):

Definition: Ω(ot ∣ st) = p(ot ∣ st), the probability of observing ot

given the true state st.
Purpose: Models uncertainty in perception, allowing the agent
to make decisions based on observations rather than true
states.

Objective: To find an optimal policy π∗ that maximizes the expected
cumulative reward over time.
Trajectory Probability:

Definition: A trajectory τ = (s0, a0, s1, a1, …) is a sequence of states
and actions.
Probability under Policy π:



Chain Rule of Probability

pπ(τ) = p(s0)
T−1

∏
t=0

π(at ∣ st)T (st+1 ∣ st, at)

Components:
p(s0): Initial state distribution.
π(at ∣ st): Policy probability of action at in state st.
T (st+1 ∣ st, at): Transition probability to state st+1.

Definition: The chain rule of probability allows us to express the joint
probability of a sequence of random variables as a product of conditional
probabilities.
Mathematical Formulation:

p(x1, x2, … , xn) = p(x1)
n

∏
i=2

p(xi ∣ x1, x2, … , xi−1)

Application in Reinforcement Learning:
Trajectory Probability:

In reinforcement learning, we often deal with the probability of a
trajectory τ = (s0, a0, s1, a1, … , sT , aT ) under a policy π.

Using the Chain Rule:

The joint probability pπ(τ) can be decomposed using the chain
rule:

pπ(τ) = p(s0)p(a0 ∣ s0)p(s1 ∣ s0, a0)p(a1 ∣ s1) … p(sT ∣ sT−1, aT−1)p(aT ∣ sT )

Simplification Using the Markov Property:

Due to the Markov property (future states depend only on the
current state and action), the conditional probabilities simplify:

p(st+1 ∣ s0, a0, s1, a1, … , st, at) = p(st+1 ∣ st, at)

Final Expression:

Therefore, the trajectory probability becomes:

pπ(τ) = p(s0)
T

∏
t=0

π(at ∣ st)T (st+1 ∣ st, at)

Explanation:
p(s0): Probability of starting in state s0.



Infinite Horizon and Stationary Distribution

π(at ∣ st): Policy's probability of taking action at in state
st.
T (st+1 ∣ st, at): Transition probability to state st+1 given st

and at.

Understanding with an Example:
Suppose:

The initial state s0 is drawn from p(s0).
At each time t, the agent selects action at based on π(at ∣ st).
The environment transitions to st+1 according to T (st+1 ∣ st, at).

Using the Chain Rule:
The joint probability of (s0, a0, s1, a1) is:

p(s0)π(a0 ∣ s0)T (s1 ∣ s0, a0)π(a1 ∣ s1)

This pattern continues for the entire trajectory.

Key Takeaways:
The chain rule of probability is essential for decomposing complex
joint probabilities into manageable conditional probabilities.
In reinforcement learning, it allows us to compute the likelihood of
entire trajectories under a given policy by sequentially multiplying
the probabilities of states and actions.

Relation to the Markov Property:
The Markov property simplifies the chain rule by reducing
dependencies to only the current state and action.
This simplification is crucial for computational tractability in
reinforcement learning algorithms.

Stationary Distribution (μ):
Definition: A distribution over states that remains unchanged under
the transition dynamics.

μ = Tμ

Eigenvector Interpretation: μ is an eigenvector of T with eigenvalue
1.

Existence and Uniqueness:
Conditions: The stationary distribution exists and is unique if the
Markov chain is ergodic (irreducible and aperiodic).
Ergodicity:

Irreducibility: Every state can be reached from any other state.



Expectations and Optimizations

Definition of Q-function and Value Function

Aperiodicity: The system does not cycle in a fixed period.

Importance in RL: Understanding the long-term behavior of the state
distribution is crucial for policies evaluated over an infinite horizon.

Expectation Properties:
Linearity: The expectation of a sum is the sum of the expectations.

E[∑
t

Xt] =∑
t

E[Xt]

Smoothness: While individual rewards r(st, at) may be non-smooth,
their expected values over trajectories can be smooth functions,
enabling gradient-based optimization.

Optimization Objective:
Policy Optimization: Adjust the policy π to maximize J(π) using
methods like gradient ascent.

Expanding J(π):
Nested Expectations:

J(π) = Es0∼p(s0) [Ea0∼π(a0∣s0) [r(s0, a0) + Es1∼T (s1∣s0,a0) [Ea1∼π(a1∣s1) [r(s1, a1) + …]]]]

Interpretation: Shows how the expected return unfolds over time
through a series of actions and states.

Q-function (Qπ(s, a)):
Definition: The expected cumulative reward starting from state s,
taking action a, and thereafter following policy π.

Qπ(s, a) = r(s, a) + Es′∼T (s′∣s,a) [V π(s′)]

Usefulness: Knowing Qπ(s, a) allows for direct policy improvement by
selecting actions that maximize Q.

Value Function (V π(s)):
Definition: The expected cumulative reward starting from state s and
following policy π.

V π(s) = Ea∼π(a∣s) [Qπ(s, a)]

Relationship to Q-function: V π(s) is the expected value of Qπ(s, a)

over all possible actions at state s according to policy π.



Example: Expanding J(π) over 3 Steps

Mathematical Expansion:

J(π) = Es0∼p(s0) [Ea0∼π(a0∣s0) [r(s0, a0) + Es1∼T (s1∣s0,a0) [Ea1∼π(a1∣s1) [r(s1, a1) + Es2∼T (s2∣s1,a1) [Ea2∼π(a2∣s2)

Using Value and Q-functions:

At t = 2:

V π(s2) = Ea2∼π(a2∣s2) [Qπ(s2, a2)] = Ea2 [r(s2, a2)]

At t = 1:

Qπ(s1, a1) = r(s1, a1) + Es2∼T (s2∣s1,a1) [V π(s2)]

At t = 0:

V π(s0) = Ea0∼π(a0∣s0) [Qπ(s0, a0)]

Expressing J(π):

J(π) = Es0∼p(s0) [V π(s0)]

Important Ideas in Reinforcement Learning

Expressing J(π) with Value Function:
Equation:

J(π) = Es0∼p(s0) [V π(s0)]

Interpretation: The expected return is the expected value function at
the initial state.

Idea 1: Policy Improvement with Q-function
Concept: If you have a policy π and know its Q-function Qπ(s, a),
you can create a new policy π′ that is at least as good by choosing
actions that maximize Qπ(s, a).

Improved Policy:

π′(a ∣ s) = {
1, if a = arg maxa′ Qπ(s, a′)
0, otherwise

Result: π′ will perform at least as well as π, potentially better.

Idea 2: Policy Gradient Intuition
Concept: Adjust the policy to increase the probability of actions that
are better than average.
Advantage Function (Aπ(s, a)):

Definition:



Key Takeaways

References

Aπ(s, a) = Qπ(s, a) − V π(s)

Interpretation: Measures how much better action a is compared
to the average action at state s.

Policy Adjustment:
Increase π(a ∣ s) if Aπ(s, a) > 0 (action is better than average).
Decrease π(a ∣ s) if Aπ(s, a) < 0 (action is worse than average).

Outcome: Over time, the policy improves by favoring better-than-
average actions.

Understanding MDPs: Grasp the components and how they model
decision-making.
Goal of RL: Maximize the expected cumulative reward by finding the
optimal policy.
Chain Rule of Probability: Essential for computing trajectory probabilities
and understanding how policies influence outcomes.
Value Functions: Central to evaluating and improving policies.
Policy Improvement Strategies: Utilize the Q-function and advantage
function to enhance policy performance.

CS275: Lecture 4, Part 1
CS285: Lecture 4, Part 3

https://www.youtube.com/watch?v=jds0Wh9jTvE&list=PL_iWQOsE6TfVYGEGiAOMaOzzv41Jfm_Ps&index=9
https://www.youtube.com/watch?v=Pua9zO_YmKA&list=PL_iWQOsE6TfVYGEGiAOMaOzzv41Jfm_Ps&index=12

