CS285 Learning Notes on Reinforcement Learning

Created: 2024-10-12 09:40

Markov Chain and Markov Decision Process

Markov Chain

- **Definition:** A Markov Chain is a stochastic process that transitions from one state to another within a state space, where the probability of each state depends only on the previous state (Markov property).
- **Components:**
	- **State Space** (S) : The set of all possible states s_i , which can be discrete (e.g., positions on a chessboard) or continuous (e.g., positions in physical space).
	- **Transition Operator (**T**)**:
		- **Definition:** Represents the probabilities of moving from one state to another.
		- **Notation:** $T_{ij} = p(s_{t+1} = s_j | s_t = s_i)$, the probability of transitioning from state s_i to state s_j .
		- **Operator Property:** T acts on the state distribution μ_t to produce the next state distribution μ_{t+1} :

$$
\mu_{t+1} = T \mu_t
$$

Interpretation: If you know the distribution of states at time t, applying T gives you the distribution at time $t+1$.

Markov Decision Process (MDP)

- **Definition:** An MDP extends a Markov Chain by incorporating actions and rewards, modeling decision-making in stochastic environments.
- **Components:** $M = (S, A, T, r)$
	- **State Space (**S**)**: Set of possible states.
	- **Action Space (**A**)**: Set of possible actions the agent can take.
	- Transition Function (T) :
		- **Definition:** $T(s_{t+1} | s_t, a_t) = p(s_{t+1} | s_t, a_t)$, the probability of transitioning to state s_{t+1} given state s_t and action a_t .
- **Tensor Representation:** For discrete states and actions, T can be represented as a tensor of shape $|S| \times |A| \times |S|$.
- **Reward Function (**r**)**:
	- **Definition:** $r(s_t, a_t)$ provides the immediate reward for taking action a_t in state s_t .
	- **Purpose:** Guides the agent toward desirable outcomes.
- **State Distribution Update:**
	- **Policy** (π) : A strategy defining the probability of taking action a in state s, denoted $\pi(a \mid s)$.
	- **Update Equation:**

$$
\mu_{t+1}(s') = \sum_{s \in S} \sum_{a \in A} T(s' \mid s,a) \mu_t(s) \pi(a \mid s)
$$

Explanation: The probability of being in state s' at time $t+1$ depends on all possible transitions from states s to s' via actions a, weighted by the probabilities $\mu_t(s)$ and $\pi(a \mid s)$.

Partially Observable Markov Decision Process (POMDP)

- **Definition:** A POMDP generalizes an MDP by accounting for situations where the agent cannot fully observe the underlying state.
- **Components:** $M = (S, A, T, r, O, \Omega)$
	- **Observation Space (**O**)**: Set of possible observations the agent can receive.
	- **Emission Probability (**Ω**)**:
		- **Definition:** $\Omega(o_t | s_t) = p(o_t | s_t)$, the probability of observing o_t given the true state s_t .
		- **Purpose:** Models uncertainty in perception, allowing the agent to make decisions based on observations rather than true states.

The Goal of Reinforcement Learning

- **Objective:** To find an optimal policy π ∗ that maximizes the expected cumulative reward over time.
- **Trajectory Probability:**
	- **Definition:** A trajectory $\tau = (s_0, a_0, s_1, a_1, \ldots)$ is a sequence of states and actions.
	- **Probability under Policy** π**:**

$$
p_\pi(\tau) = p(s_0) \prod_{t=0}^{T-1} \pi(a_t \mid s_t) T(s_{t+1} \mid s_t, a_t)
$$

Components:

- $p(s_0)$: Initial state distribution.
- $\pi(a_t | s_t)$: Policy probability of action a_t in state s_t .
- $T(s_{t+1} | s_t, a_t)$: Transition probability to state s_{t+1} .

Chain Rule of Probability

- **Definition:** The chain rule of probability allows us to express the joint probability of a sequence of random variables as a product of conditional probabilities.
- **Mathematical Formulation:**

$$
p(x_1,x_2,\dots,x_n)=p(x_1)\prod_{i=2}^n p(x_i\mid x_1,x_2,\dots,x_{i-1})
$$

- **Application in Reinforcement Learning:**
	- **Trajectory Probability:**

In reinforcement learning, we often deal with the probability of a trajectory $\tau = (s_0, a_0, s_1, a_1, \ldots, s_T, a_T)$ under a policy π .

Using the Chain Rule:

The joint probability $p_{\pi}(\tau)$ can be decomposed using the chain rule:

$$
p_\pi(\tau) = p(s_0) p(a_0 \mid s_0) p(s_1 \mid s_0, a_0) p(a_1 \mid s_1) \ldots p(s_T \mid s_{T-1}, a_{T-1}) p(a_T \mid s_T)
$$

Simplification Using the Markov Property:

Due to the Markov property (future states depend only on the current state and action), the conditional probabilities simplify:

$$
p(s_{t+1} \mid s_0, a_0, s_1, a_1, \ldots, s_t, a_t) = p(s_{t+1} \mid s_t, a_t)
$$

Final Expression:

Therefore, the trajectory probability becomes:

$$
p_\pi(\tau) = p(s_0) \prod_{t=0}^T \pi(a_t \mid s_t) T(s_{t+1} \mid s_t, a_t)
$$

Explanation:

• $p(s_0)$: Probability of starting in state s_0 .

- $\pi(a_t \mid s_t)$: Policy's probability of taking action a_t in state s_t .
- $T(s_{t+1} | s_t, a_t)$: Transition probability to state s_{t+1} given s_t and a_t .

Understanding with an Example:

Suppose:

- The initial state s_0 is drawn from $p(s_0)$.
- At each time t , the agent selects action a_t based on $\pi(a_t \mid s_t)$.
- The environment transitions to s_{t+1} according to $T(s_{t+1} | s_t, a_t)$.

Using the Chain Rule:

• The joint probability of (s_0, a_0, s_1, a_1) is:

 $p(s_0)\pi(a_0 \mid s_0)T(s_1 \mid s_0, a_0)\pi(a_1 \mid s_1)$

This pattern continues for the entire trajectory.

Key Takeaways:

- The chain rule of probability is essential for decomposing complex joint probabilities into manageable conditional probabilities.
- In reinforcement learning, it allows us to compute the likelihood of entire trajectories under a given policy by sequentially multiplying the probabilities of states and actions.

Relation to the Markov Property:

- The Markov property simplifies the chain rule by reducing dependencies to only the current state and action.
- This simplification is crucial for computational tractability in reinforcement learning algorithms.

Infinite Horizon and Stationary Distribution

Stationary Distribution (μ**):**

Definition: A distribution over states that remains unchanged under the transition dynamics.

$$
\mu = T\mu
$$

- **Eigenvector Interpretation:** μ is an eigenvector of T with eigenvalue 1.
- **Existence and Uniqueness:**
	- **Conditions:** The stationary distribution exists and is unique if the Markov chain is **ergodic** (irreducible and aperiodic).
	- **Ergodicity:**
		- **Irreducibility:** Every state can be reached from any other state.

Aperiodicity: The system does not cycle in a fixed period.

Importance in RL: Understanding the long-term behavior of the state distribution is crucial for policies evaluated over an infinite horizon.

Expectations and Optimizations

Expectation Properties:

Linearity: The expectation of a sum is the sum of the expectations.

$$
\mathbb{E}\left[\sum_t X_t\right] = \sum_t \mathbb{E}[X_t]
$$

- **Smoothness:** While individual rewards $r(s_t, a_t)$ may be non-smooth, their expected values over trajectories can be smooth functions, enabling gradient-based optimization.
- **Optimization Objective:**
	- **Policy Optimization:** Adjust the policy π to maximize $J(\pi)$ using methods like gradient ascent.

Definition of Q-function and Value Function

- **Expanding** $J(\pi)$:
	- **Nested Expectations:**

 $J(\pi)=\mathbb{E}_{s_0 \sim p(s_0)} \left[\mathbb{E}_{a_0 \sim \pi(a_0 \mid s_0)} \left[r(s_0, a_0) + \mathbb{E}_{s_1 \sim T(s_1 \mid s_0, a_0)} \left[\mathbb{E}_{a_1 \sim \pi(a_1 \mid s_1)} \left[r(s_1, a_1) + \ldots \right] \right] \right] \right]$

- **Interpretation:** Shows how the expected return unfolds over time through a series of actions and states.
- Q -function $(Q^{\pi}(s, a))$:
	- **Definition:** The expected cumulative reward starting from state s, taking action a , and thereafter following policy π .

$$
Q^{\pi}(s,a) = r(s,a) + \mathbb{E}_{s^{\prime} \sim T(s^{\prime}|s,a)}\left[V^{\pi}(s^{\prime})\right]
$$

- **Usefulness:** Knowing $Q^{\pi}(s, a)$ allows for direct policy improvement by selecting actions that maximize Q .
- **Value Function** $(V^{\pi}(s))$:
	- **Definition:** The expected cumulative reward starting from state s and following policy π .

$$
V^{\pi}(s) = \mathbb{E}_{a \sim \pi(a|s)} \left[Q^{\pi}(s,a)\right]
$$

Relationship to Q-function: $V^{\pi}(s)$ is the expected value of $Q^{\pi}(s, a)$ over all possible actions at state s according to policy π .

- **Expressing** J(π) **with Value Function:**
	- **Equation:**

$$
J(\pi) = \mathbb{E}_{s_0 \sim p(s_0)} \left[V^\pi(s_0) \right]
$$

Interpretation: The expected return is the expected value function at the initial state.

Example: Expanding J(π) over 3 Steps

Mathematical Expansion:

 $J(\pi) = \mathbb{E}_{s_0 \sim p(s_0)} \left[\mathbb{E}_{a_0 \sim \pi(a_0 \mid s_0)} \left[r(s_0, a_0) + \mathbb{E}_{s_1 \sim T(s_1 \mid s_0, a_0)} \left[\mathbb{E}_{a_1 \sim \pi(a_1 \mid s_1)} \left[r(s_1, a_1) + \mathbb{E}_{s_2 \sim T(s_2 \mid s_1, a_1)} \left[\mathbb{E}_{a_2 \sim \pi(a_2 \mid s_2)} \left[\mathbb{E}_{a_3 \sim \pi(a_3 \mid s_1)} \left[\mathbb{E}_{a_4 \sim \pi(a_4 \mid s_$ Using Value and Q-functions:

At $t = 2$.

$$
V^{\pi}(s_2) = \mathbb{E}_{a_2 \sim \pi(a_2|s_2)} \left[Q^{\pi}(s_2, a_2)\right] = \mathbb{E}_{a_2} \left[r(s_2, a_2)\right]
$$

At $t = 1$:

$$
Q^{\pi}(s_1, a_1) = r(s_1, a_1) + \mathbb{E}_{s_2 \sim T(s_2 \mid s_1, a_1)} \left[V^{\pi}(s_2) \right]
$$

At $t = 0$:

$$
V^{\pi}(s_0) = \mathbb{E}_{a_0 \sim \pi(a_0|s_0)} \left[Q^{\pi}(s_0, a_0)\right]
$$

Expressing $J(\pi)$:

$$
J(\pi) = \mathbb{E}_{s_0 \sim p(s_0)} \left[V^\pi(s_0) \right]
$$

Important Ideas in Reinforcement Learning

- **Idea 1: Policy Improvement with** Q**-function**
	- **Concept:** If you have a policy π and know its Q -function $Q^{\pi}(s, a)$, you can create a new policy π' that is at least as good by choosing actions that maximize $Q^{\pi}(s, a)$.
		- **Improved Policy:**

$$
\pi'(a \mid s) = \begin{cases} 1, & \text{if } a = \argmax_{a'} Q^{\pi}(s, a') \\ 0, & \text{otherwise} \end{cases}
$$

- **Result:** π' will perform at least as well as π , potentially better.
- **Idea 2: Policy Gradient Intuition**
	- **Concept:** Adjust the policy to increase the probability of actions that are better than average.
	- **Advantage Function** $(A^{\pi}(s, a))$ **:**
		- **Definition:**

$$
A^\pi(s,a) = Q^\pi(s,a) - V^\pi(s)
$$

- **Interpretation:** Measures how much better action a is compared to the average action at state s .
- **Policy Adjustment:**
	- Increase $\pi(a \mid s)$ if $A^{\pi}(s, a) > 0$ (action is better than average).
	- Decrease $\pi(a \mid s)$ if $A^{\pi}(s, a) < 0$ (action is worse than average).
- **Outcome:** Over time, the policy improves by favoring better-thanaverage actions.

Key Takeaways

- **Understanding MDPs:** Grasp the components and how they model decision-making.
- **Goal of RL:** Maximize the expected cumulative reward by finding the optimal policy.
- **Chain Rule of Probability:** Essential for computing trajectory probabilities and understanding how policies influence outcomes.
- **Value Functions:** Central to evaluating and improving policies.
- **Policy Improvement Strategies:** Utilize the Q-function and advantage function to enhance policy performance.

References

- CS275: [Lecture](https://www.youtube.com/watch?v=jds0Wh9jTvE&list=PL_iWQOsE6TfVYGEGiAOMaOzzv41Jfm_Ps&index=9) 4, Part 1
- CS285: [Lecture](https://www.youtube.com/watch?v=Pua9zO_YmKA&list=PL_iWQOsE6TfVYGEGiAOMaOzzv41Jfm_Ps&index=12) 4, Part 3