CS285 Learning Notes on Reinforcement Learning

Created: 2024-10-12 09:40

Markov Chain and Markov Decision Process

Markov Chain

- **Definition:** A Markov Chain is a stochastic process that transitions from one state to another within a state space, where the probability of each state depends only on the previous state (Markov property).
- Components:
 - State Space (S): The set of all possible states s_i , which can be discrete (e.g., positions on a chessboard) or continuous (e.g., positions in physical space).
 - Transition Operator (T):
 - **Definition:** Represents the probabilities of moving from one state to another.
 - Notation: $T_{ij} = p(s_{t+1} = s_j | s_t = s_i)$, the probability of transitioning from state s_i to state s_j .
 - **Operator Property:** T acts on the state distribution μ_t to produce the next state distribution μ_{t+1} :

$$\mu_{t+1} = T \mu_t$$

• Interpretation: If you know the distribution of states at time t, applying T gives you the distribution at time t+1.

Markov Decision Process (MDP)

- **Definition:** An MDP extends a Markov Chain by incorporating actions and rewards, modeling decision-making in stochastic environments.
- Components: M = (S, A, T, r)
 - State Space (S): Set of possible states.
 - Action Space (A): Set of possible actions the agent can take.
 - Transition Function (T):
 - **Definition:** $T(s_{t+1} | s_t, a_t) = p(s_{t+1} | s_t, a_t)$, the probability of transitioning to state s_{t+1} given state s_t and action a_t .

- Tensor Representation: For discrete states and actions, T can be represented as a tensor of shape $|S| \times |A| \times |S|$.
- Reward Function (r):
 - **Definition:** $r(s_t, a_t)$ provides the immediate reward for taking action a_t in state s_t .
 - Purpose: Guides the agent toward desirable outcomes.
- State Distribution Update:
 - **Policy** (π) : A strategy defining the probability of taking action a in state s, denoted $\pi(a \mid s)$.
 - Update Equation:

$$\mu_{t+1}(s') = \sum_{s\in S}\sum_{a\in A} T(s'\mid s,a) \mu_t(s) \pi(a\mid s)$$

• **Explanation:** The probability of being in state s' at time t + 1 depends on all possible transitions from states s to s' via actions a, weighted by the probabilities $\mu_t(s)$ and $\pi(a \mid s)$.

Partially Observable Markov Decision Process (POMDP)

- **Definition:** A POMDP generalizes an MDP by accounting for situations where the agent cannot fully observe the underlying state.
- Components: $M = (S, A, T, r, O, \Omega)$
 - **Observation Space (***O***)**: Set of possible observations the agent can receive.
 - Emission Probability (Ω):
 - **Definition:** $\Omega(o_t \mid s_t) = p(o_t \mid s_t)$, the probability of observing o_t given the true state s_t .
 - **Purpose:** Models uncertainty in perception, allowing the agent to make decisions based on observations rather than true states.

The Goal of Reinforcement Learning

- **Objective:** To find an optimal policy π^* that maximizes the expected cumulative reward over time.
- Trajectory Probability:
 - **Definition:** A trajectory $au = (s_0, a_0, s_1, a_1, \ldots)$ is a sequence of states and actions.
 - Probability under Policy π :

$$p_{\pi}(au) = p(s_0) \prod_{t=0}^{T-1} \pi(a_t \mid s_t) T(s_{t+1} \mid s_t, a_t)$$

• Components:

- $p(s_0)$: Initial state distribution.
- $\pi(a_t \mid s_t)$: Policy probability of action a_t in state s_t .
- $T(s_{t+1} \mid s_t, a_t)$: Transition probability to state s_{t+1} .

Chain Rule of Probability

- **Definition:** The chain rule of probability allows us to express the joint probability of a sequence of random variables as a product of conditional probabilities.
- Mathematical Formulation:

$$p(x_1, x_2, \dots, x_n) = p(x_1) \prod_{i=2}^n p(x_i \mid x_1, x_2, \dots, x_{i-1})$$

- Application in Reinforcement Learning:
 - Trajectory Probability:

In reinforcement learning, we often deal with the probability of a trajectory $\tau = (s_0, a_0, s_1, a_1, \dots, s_T, a_T)$ under a policy π .

• Using the Chain Rule:

The joint probability $p_{\pi}(\tau)$ can be decomposed using the chain rule:

$$p_{\pi}(au) = p(s_0)p(a_0 \mid s_0)p(s_1 \mid s_0, a_0)p(a_1 \mid s_1) \dots p(s_T \mid s_{T-1}, a_{T-1})p(a_T \mid s_T)$$

• Simplification Using the Markov Property:

Due to the Markov property (future states depend only on the current state and action), the conditional probabilities simplify:

$$p(s_{t+1} \mid s_0, a_0, s_1, a_1, \dots, s_t, a_t) = p(s_{t+1} \mid s_t, a_t)$$

• Final Expression:

Therefore, the trajectory probability becomes:

$$p_{\pi}(au) = p(s_0) \prod_{t=0}^T \pi(a_t \mid s_t) T(s_{t+1} \mid s_t, a_t)$$

• Explanation:

• $p(s_0)$: Probability of starting in state s_0 .

- $\pi(a_t \mid s_t)$: Policy's probability of taking action a_t in state s_t .
- $T(s_{t+1} | s_t, a_t)$: Transition probability to state s_{t+1} given s_t and a_t .

• Understanding with an Example:

- Suppose:
 - The initial state s_0 is drawn from $p(s_0)$.
 - At each time t, the agent selects action a_t based on $\pi(a_t \mid s_t)$.
 - The environment transitions to s_{t+1} according to $T(s_{t+1} \mid s_t, a_t)$.

• Using the Chain Rule:

• The joint probability of (s_0, a_0, s_1, a_1) is:

 $p(s_0)\pi(a_0 \mid s_0)T(s_1 \mid s_0, a_0)\pi(a_1 \mid s_1)$

• This pattern continues for the entire trajectory.

• Key Takeaways:

- The chain rule of probability is essential for decomposing complex joint probabilities into manageable conditional probabilities.
- In reinforcement learning, it allows us to compute the likelihood of entire trajectories under a given policy by sequentially multiplying the probabilities of states and actions.

• Relation to the Markov Property:

- The Markov property simplifies the chain rule by reducing dependencies to only the current state and action.
- This simplification is crucial for computational tractability in reinforcement learning algorithms.

Infinite Horizon and Stationary Distribution

• Stationary Distribution (μ):

• **Definition:** A distribution over states that remains unchanged under the transition dynamics.

$$\mu = T\mu$$

- **Eigenvector Interpretation:** μ is an eigenvector of T with eigenvalue 1.
- Existence and Uniqueness:
 - **Conditions:** The stationary distribution exists and is unique if the Markov chain is **ergodic** (irreducible and aperiodic).
 - Ergodicity:
 - Irreducibility: Every state can be reached from any other state.

• Aperiodicity: The system does not cycle in a fixed period.

• Importance in RL: Understanding the long-term behavior of the state distribution is crucial for policies evaluated over an infinite horizon.

Expectations and Optimizations

• Expectation Properties:

• Linearity: The expectation of a sum is the sum of the expectations.

$$\mathbb{E}\left[\sum_t X_t
ight] = \sum_t \mathbb{E}[X_t]$$

- Smoothness: While individual rewards $r(s_t, a_t)$ may be non-smooth, their expected values over trajectories can be smooth functions, enabling gradient-based optimization.
- Optimization Objective:
 - **Policy Optimization:** Adjust the policy π to maximize $J(\pi)$ using methods like gradient ascent.

Definition of Q-function and Value Function

- Expanding $J(\pi)$:
 - Nested Expectations:

 $J(\pi) = \mathbb{E}_{s_0 \sim p(s_0)} \left[\mathbb{E}_{a_0 \sim \pi(a_0|s_0)} \left[r(s_0, a_0) + \mathbb{E}_{s_1 \sim T(s_1|s_0, a_0)} \left[\mathbb{E}_{a_1 \sim \pi(a_1|s_1)} \left[r(s_1, a_1) + \ldots \right] \right] \right]$

• Interpretation: Shows how the expected return unfolds over time through a series of actions and states.

• Q-function ($Q^{\pi}(s,a)$):

• **Definition:** The expected cumulative reward starting from state s, taking action a, and thereafter following policy π .

$$Q^{\pi}(s,a) = r(s,a) + \mathbb{E}_{s' \sim T(s'|s,a)} \left[V^{\pi}(s')
ight]$$

- **Usefulness:** Knowing $Q^{\pi}(s, a)$ allows for direct policy improvement by selecting actions that maximize Q.
- Value Function ($V^{\pi}(s)$):
 - **Definition:** The expected cumulative reward starting from state s and following policy π .

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(a|s)}\left[Q^{\pi}(s,a)
ight]$$

• **Relationship to** *Q*-function: $V^{\pi}(s)$ is the expected value of $Q^{\pi}(s, a)$ over all possible actions at state *s* according to policy π .

- Expressing $J(\pi)$ with Value Function:
 - Equation:

$$J(\pi) = \mathbb{E}_{s_0 \sim p(s_0)}\left[V^{\pi}(s_0)
ight]$$

• Interpretation: The expected return is the expected value function at the initial state.

Example: Expanding $J(\pi)$ over 3 Steps

Mathematical Expansion:

 $J(\pi) = \mathbb{E}_{s_0 \sim p(s_0)} \left[\mathbb{E}_{a_0 \sim \pi(a_0|s_0)} \left[r(s_0, a_0) + \mathbb{E}_{s_1 \sim T(s_1|s_0, a_0)} \left[\mathbb{E}_{a_1 \sim \pi(a_1|s_1)} \left[r(s_1, a_1) + \mathbb{E}_{s_2 \sim T(s_2|s_1, a_1)} \left[\mathbb{E}_{a_2 \sim \pi(a_2|s_2)} \right] \right] \right] \right]$

Using Value and Q-functions:

At t = 2:

$$V^{\pi}(s_2) = \mathbb{E}_{a_2 \sim \pi(a_2 | s_2)}\left[Q^{\pi}(s_2, a_2)
ight] = \mathbb{E}_{a_2}\left[r(s_2, a_2)
ight]$$

At t = 1:

$$Q^{\pi}(s_1,a_1) = r(s_1,a_1) + \mathbb{E}_{s_2 \sim T(s_2|s_1,a_1)} \left[V^{\pi}(s_2)
ight]$$

At t = 0:

$$V^{\pi}(s_0) = \mathbb{E}_{a_0 \sim \pi(a_0|s_0)}\left[Q^{\pi}(s_0,a_0)
ight]$$

Expressing $J(\pi)$:

$$J(\pi) = \mathbb{E}_{s_0 \sim p(s_0)}\left[V^{\pi}(s_0)
ight]$$

Important Ideas in Reinforcement Learning

- Idea 1: Policy Improvement with Q-function
 - **Concept:** If you have a policy π and know its Q-function $Q^{\pi}(s, a)$, you can create a new policy π' that is at least as good by choosing actions that maximize $Q^{\pi}(s, a)$.
 - Improved Policy:

$$\pi'(a \mid s) = egin{cases} 1, & ext{if} \ a = rg\max_{a'} Q^{\pi}(s,a') \ 0, & ext{otherwise} \end{cases}$$

- **Result:** π' will perform at least as well as π , potentially better.
- Idea 2: Policy Gradient Intuition
 - **Concept:** Adjust the policy to increase the probability of actions that are better than average.
 - Advantage Function ($A^{\pi}(s,a)$):
 - Definition:

$$A^\pi(s,a)=Q^\pi(s,a)-V^\pi(s)$$

- Interpretation: Measures how much better action *a* is compared to the average action at state *s*.
- Policy Adjustment:
 - Increase $\pi(a \mid s)$ if $A^{\pi}(s, a) > 0$ (action is better than average).
 - Decrease $\pi(a \mid s)$ if $A^{\pi}(s,a) < 0$ (action is worse than average).
- **Outcome:** Over time, the policy improves by favoring better-thanaverage actions.

Key Takeaways

- **Understanding MDPs:** Grasp the components and how they model decision-making.
- **Goal of RL:** Maximize the expected cumulative reward by finding the optimal policy.
- **Chain Rule of Probability:** Essential for computing trajectory probabilities and understanding how policies influence outcomes.
- Value Functions: Central to evaluating and improving policies.
- **Policy Improvement Strategies:** Utilize the *Q*-function and advantage function to enhance policy performance.

References

- <u>CS275: Lecture 4, Part 1</u>
- CS285: Lecture 4, Part 3